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Abstract. The influence of rotation on the total masses and radii of neutron stars is calculated by Hartle’s
slow-rotation formalism, while the equation of state is considered in a relativistic σ-ω model. As the changes
of the mass and radius of a real neutron star caused by rotation are very small in comparison with the
total mass and radius, one can see that Hartle’s approximate method is rational to deal with the rotating
neutron stars. If three property values, mass, radius and period, are observed for the same neutron star,
then the EOS of this neutron star could be decided entirely.

PACS. 04.40.Dg Relativistic stars: structure, stability, and oscillations – 95.30.Sf Relativity and gravita-
tion – 97.10.Kc Stellar rotation – 97.60.Jd Neutron stars

1 Introduction

Neutron stars are dense, neutron-packed remnants of mas-
sive stars after their supernova explosions. Recently, in
both experiment and theory, much interest is focused on
neutron stars mainly for two reasons [1–3]. One is to de-
termine the equation of state (EOS) of superdense matter,
and then to understand the early universe, its evolution
to the present day and the various astrophysical phenom-
ena; the other one is that the neutron star is one of the
most probable sources of detectable gravitational waves.
To understand neutron stars, the first thing to do is to un-
derstand their structure, such as the compositions, total
masses, radii, redshifts etc. Because of their strongly gravi-
tational field and high density, neutron stars must be stud-
ied in the framework of general relativity. For a static neu-
tron star, giving the EOS, using TOV equations [4], which
are deduced from the Einstein field equations, one can get
an exact solution. But for a rotating neutron star, the com-
ponents of the Einstein field equations become much more
difficult. Nowadays, several approximate solutions of this
problem have been developed [5,6], among which Hartle’s
slow-rotation formalism [7,8] is the most popular one.

The properties of neutron stars such as masses, rota-
tional frequencies, radii, moments of inertia and redshifts
are sensitive to the EOS of the matters [2,3]. As the in-
terior core contains most of the mass of a neutron star,
attention to the EOS is mostly focused on the neutron
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star core, that is on the matters at a density several times
above the nuclear matter saturation density. In the core
of a neutron star, the compositions still remain blurry in
some degree due to the high density and uncertainty of
strong interaction, but as density increases in the neutron
star, neutrons can drip out of nuclei and form a neutron
gas; and due to the chemical equilibrium and the electric
charge neutrality, there are at least protons and electrons
in neutron stars; on the other hand, as the density in-
creases, hyperons will be dominant in neutron stars [9]. In
this paper, Hartle’s formalism will be used to deal with
two kinds of rotating neutron stars: the traditional neu-
tron stars, in which n, p, e, µ, are the main elements; and
hyperon stars, in which n, p, e, µ, Λ,Σ,Ξ,∆ are the main
elements (in fact, the compositions of the neutron star
may be much more complex than this). Their EOSs will
be considered in the relativistic σ-ω model.

In this paper, we adopt the metric signature −+++,
G = c = 1.

2 Hartle’s slow-rotation formalism

In relativity, the space-time geometry of a rotating star in
equilibrium is described by a stationary and axisymmetric
metric of the form

ds2 = −e2νdt2 + e2λdr2 + e2ψ(dφ− ωdt)2 + e2µdθ2 , (1)
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where ω(r) is the angular velocity of the local inertial
frame and is proportional to the star’s rotational fre-
quency Ω, which is the uniform angular velocity of the star
relative to an observer at infinity. Expanding the metric
function at second order in Ω, one has [7]

e2ν = e2ϕ
[
1 + 2(h0 + h2P2)

]
, (2)

e2λ =
[
1 +

2
r
(m0 +m2P2)

×
(
1− 2M0(r)

r

)−1](
1− 2M0(r)

r

)−1

, (3)

e2ψ = r2 sin2 θ
[
1 + 2(v2 − h2)P2

]
, (4)

e2µ = r2
[
1 + 2(v2 − h2)P2

]
, (5)

where e2ϕ and M0(r) denote the metric function and the
mass of the non-rotating neutron star with the same cen-
tral density, respectively; P2 is the Legendre ploynomial
of order 2; the perturbation functions m0,m2, h0, h2, v2

are proportional to Ω2 and are to be calculated from the
Einstein field equations.

From the (t, φ) component of the Einstein field equa-
tions, one gets [7]

1
r4

d
dr

(
r4j

dω̄
dr

)
+

4
r

dj
dr

ω̄ = 0, (6)

where j(r) = e−ϕ[1 − 2M0(r)/r]
1
2 , ω̄ = Ω − ω, which de-

notes the angular velocity of the fluid relative to the local
inertial frame. The boundary conditions are imposed as
ω̄ = ω̄c at the center, dω̄

dr |ω̄c=0, where ω̄c is chosen arbi-
trarily. Integrating eq. (6) outward from the center of the
star, one would get the function ω̄(r). Outside the star,
from eq. (6) one has ω̄(r) = Ω − 2J

r3 , where J is the total
angular mementum of the star, which takes the form [2]
J = 1

6R
4
0

dω̄
dr |r=R0 . Thus at the surface, one can determine

the angular velocity Ω corresponding to ω̄c as

Ω = ω̄(R0) + 2
J

R3
0

. (7)

In Newton’s theory, there exists a maximal rotating
frequency to the star formed by a perfect fluid, at which
there just comes into being a balance of gravitational
and centrifugal forces at the star’s equator. Exceeding
the maximal frequency, the star will engender mass shed-
ding at the equator. According to Newton’s mechanics and
Newton’s gravitational theory, one can get the maximal
frequency as

Ωc =

√
M

R
, (8)

in which, M , R are the mass and the radius of the star,
respectively. In the framework of general relativity, the
upper limit of the frequency, which is called Kepler fre-
quency, is the solution of the following equation [10]:

Ωk = eυ−ψ

√
υ′

ψ′ +
( ω′

2ψ′ e
ψ−υ

)2

+
ω′

2ψ′ + ω. (9)

From the (t, t) and (r, r) components of the Einstein
field equations, one gets two coupled ordinary differential
equations of m0 and h0 as [7,8]

dm0

dr
= 4πr2

d(p+ ρ)
dp

(ρ+ p)p∗0 +
1
12
j2r4

(
dω̄
dr

)2

−1
3
r3
d(j2)
dr

ω̄2, (10)

dp∗0
dr

= −m0(1 + 8πr2p)
[r − 2M0(r)]2

− 4πr2(p+ ρ)
r − 2M0(r)

p∗0

+
1
12

r4j2

r−2M0(r)

(
dω̄
dr

)2

+
1
3
d
dr

[
r3j2ω̄2

r−2M0(r)

]
, (11)

where p∗0 = −h0 + 1
3r

2e−2υω̄2 + C; here C is a constant
determined by the demand that h0 be continuous across
the star’s surface. These equations are also integrated out-
ward, with the boundary conditions that both m0 and p∗0
vanish at the origin. With the same central density, the
difference between the mass of the rotating star and the
non-rotating star is

δM = m0(R0) +
J2

R3
0

. (12)

The difference of the mean radius is

δr = −p∗0(ρ+ p)
dp
dr

. (13)

3 Model for the EOSs —the relativistic σ-ω
model

There are several models to deal with superdense mat-
ters, such as non-relativistic models and relativistic field-
theoretical models [3]. In the different models, the frac-
tions of particles in superdense matters are different, and
then the bulk properties of superdense matters are differ-
ent, that is, their EOSs are different. Here the relativistic
σ-ω model will be adopted [11]. The Lagrangian density
of this model is

L =
∑
B

ψ̄B

(
iγµ∂

µ +mB − gσBσ − gωBγµω
µ

−1
2
gρBγµ)τ · )ρµ

)
ψB +

1
2
(∂σ)2 − 1

2
m2

σσ
2

−1
4
FµνF

µν +
1
2
m2

ωωµω
µ − U(σ)− 1

4
)ρµν · )ρµν

+
1
2
m2

ρ)ρµ · )ρµ +
∑

l

ψ̄l(iγµ∂
µ −ml)ψl (14)

in which U(σ) = aσ+ 1
3!cσ

3 + 1
4!dσ

4, Fµν = ∂µων − ∂νωµ,
)ρµν = ∂µ)ρν − ∂ν)ρµ, ψB is the field operator of baryon B
(B = n, p for the traditional neutron stars, B = n, p, Λ,
Σ, Ξ, ∆ for the hyperon stars); ψl is the field operator of
lepton l (l = e, µ); and σ, ωµ, )ρµ are the field operators
of the σ-, ω-, ρ-meson, respectively; gσB, gωB , gρB are the
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Fig. 1. Equation of state of traditional neutron stars (TNS)
and hyperon stars (HS).
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Fig. 2. The minimum rotational periods as a function of the
central density of TNS and HS when they rotate at their Kepler
frequency.

coupling constants between σ-, ω-, ρ-meson and baryon B,
respectively. In general, the coupling constants between σ
(ω or ρ) meson and neutron and proton are equal and de-
cided by the saturated property of nuclear matter (gσn =
gσp, gωn = gωp) and the symmetry energy of nuclear mat-
ter (gσρ, gωρ); mB,ml,mi, (i = σ, ω, ρ) are the mass of
baryon, lepton, meson, respectively; )τ is the isospin opera-
tor. As to leptons, we assume they are free Fermi gas. From
this Lagrangian density, we can obtain the EOS of super-
dense matters, p = p(ρ), in which, p and ρ are the pressure
and energy density of superdense matters, respectively. In
the 1-loop approximation, the loop’s contribution to the
propagators of the nucleon and σ-meson is considered, and
the renormalization is used to renormalize the divergent
part of the loop contribution (for neutron star matters,
the effect of considering the 1-loop approximation is not
very obvious). In the numerical calculation, we adopt the
following parameter values [11]: a = −2.1×107 MeV3, c =
0.97×Mn, d = 1277, gs = 6.73, gv = 8.59,Mn = 938MeV,
mω = 783MeV, mσ = 550MeV, mρ = 770MeV, and the
incompressibility of nuclear matter is 224MeV, which is
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Fig. 3. Increment of the mass and radius of TNS compared
to that of non-rotating TNS at the central density ρc = 3.5ρ0,
where ρ0 is the saturation density of nuclear matters.
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Fig. 4. Increment of the mass and radius of HS compared to
that of non-rotating HS at the central density ρc = 3.5ρ0.

consistent with the experiment result [12,13]. From fig. 1,
it is clear that the EOS of traditional neutron stars is
stiffer than the EOS of hyperon stars.

4 Numerical results and discussion

In order to compare numerical results with observation, we
present some typical observation values here. As we know,
only a few masses have been determined in the observation
of more than a thousand neutron stars. There are two
typical observed mass data: 1.36±0.08M⊙ [14] for double-
neutron-star binaries, and 1.87+0.23

−0.17M
⊙ (Vela X-1) [15]

and 1.8± 0.4M⊙ (Cygnus X-2) [16] for X-ray binaries.
The numerical results for the rotating traditional neu-

tron stars and hyperon stars in the relativistic σ-ω model
are shown in the following figures and table.

Figure 2 gives the minimum rotational periods as
a function of the central density of traditional neutron
stars and hyperon stars when they rotate at their Kepler
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Fig. 5. The total mass of non-rotating and rotating TNS as
a function of the central density, where the mass is in units of
solar masses.
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Fig. 6. The radius of non-rotating and rotating TNS as a
function of the central density.

frequency. From this figure one can see that all the cal-
culated minimum periods are smaller than the minimum
observational value of the periods of the pulsars, 1.6 ms [3];
from this fact, one can say that the adopted EOS may be a
rational one to describe neutron star matters. Comparing
fig. 2 with the following figures, it is easy to see that all the
following figures are calculated with rotating frequencies
smaller than the Kepler frequency.

Figures 3-4 show the changes of masses and radii be-
tween rotating neutron stars and non-rotating neutron
stars as a function of the rotational period. At a given
central density, it is easy to see that, as the neutron stars
rotate slowly, the increment of the masses and radii will
reduce sharply when the neutron stars’ rotational periods
are smaller than 1 ms. But as the periods become bigger
than 1.6 ms, which is the period of the fastest rotating
pulsars in observation [3], the change of the increment of
the masses and radii caused by the rotation will become
very weak, and the increment will not be higher than 2%.
As the changes of the mass and radius of a real neutron
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Fig. 7. The total mass of non-rotating and rotating HS as a
function of the central density, where the mass is in units of
solar masses.
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Fig. 8. The radius of non-rotating and rotating HS as a func-
tion of the central density.

star caused by rotation are very small in comparison with
the total mass and radius, we can see that Hartle’s ap-
proximate method is rational.

Figures 5-8 show the masses and radii of rotating and
non-rotating traditional neutron stars and hyperon stars
as a function of the central density at a given central angu-
lar velocity relative to the local inertial frame. From these
figures, one can see that around the typical observational
radii with value of 12 km, the increments of the radii are
bigger than the increments of other radii. In table 1, some
typical values of these figures are listed. For the hyperon
stars, the EOS is so soft that, even for periods smaller
than the smallest observational value, the total mass can-
not reach the observation value of X-ray binaries, that is
about 1.8M⊙ .

Figure 9 shows the period as a function of the central
density at two given central angular velocities relative to
the local inertial frame. From this figure, one can see that
a bigger central density and a bigger central angular ve-
locity relative to the local inertial frame correspond with a
smaller period. In fig. 9 one can find out that as the EOS of
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Table 1. Rotating neutron star’s properties in the relativistic σ-ω model. TNS and HS denote traditional neutron stars and
hyperon stars, respectively; ω̄c is the angular velocity relative to the local inertial frame at the center, with units of (103 s−1);
ρc is the central density, with units of (1018 kg · m−3); R0 and M0 denote the radius and the mass of the non-rotating stars, R
and M denote the radius and the mass of the rotating neutron stars, respectively; the unit of mass is the solar mass (M⊙ ), δR

R0

and δM
M0

are the fractional difference of the radius and mass between rotating neutron stars and non-rotating neutron stars; P
is the rotational period.

ω̄c ρc R0 (km) M0 R (km) M δR
R0

δM
M0

P (ms)

TNS 2.50 1.067 11.98 1.768 12.18 1.808 0.017 0.023 1.488
5.00 0.903 10.21 1.650 12.94 1.801 0.070 0.092 0.791

HS 2.50 0.921 11.80 1.336 12.04 1.367 0.020 0.023 1.686
5.00 0.811 10.87 1.265 12.87 1.385 0.084 0.095 0.873

0 280 560 840 1120 1400 1680 1960
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

TNS

HS

TNS

HS

P
e

ri
o

d
[1

0-3
S

]

ρ
c [MeV.fm-3 ]

ϖ
c
=2500S-1

ϖ
c
= 5000S-1

Fig. 9. Period as a function of the central density at two dif-
ferent angular velocities relative to the local inertial frame at
the center.
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Fig. 10. The masses as a function of the period at ρc = 3.5ρ0

for TNS and HS.

hyperon stars is softer, at the same conditions, the period
of hyperon stars is appreciably bigger than the period of
traditional neutron stars. Figures 10-11 show the masses
and radii of the traditional neutron stars and hyperon
stars as a function of the period. One can see that even the
central density of the hyperon stars is bigger than those
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Fig. 11. The radii as a function of the period at ρc = 3.5ρ0

for TNS and HS.

of the traditional neutron stars, the masses and radii of
the hyperon stars are smaller than those of the traditional
neutron stars. Another interesting result is that at a given
central density, when the period increases to a value which
is bigger than the smallest observational period, 1.6 ms,
the change of the masses and the radii with the period is
not obvious, which is consistent with the result of fig. 3.

From figs. 2-11, one can see that at a given period,
the central density and the central angular velocity rela-
tive to the local inertial frame could be chosen freely, but
if the masses and the period of a neutron star are given
(by the observational value) at the same time, then the
central density and the central angular velocity relative
to the local inertial frame will be decided. As we know,
there is another observational value: the radius of the neu-
tron star, the decided central density and central angular
velocity do not always give the exact radius. So one can
say that if these three observational values, mass, radius
and period are given to the same neutron star, there is
only one special EOS that could give a set of calculated
values, which fit like a glove to the set of observational
values, that is, these three observational values could de-
cide the EOS entirely. But the problem is that there is no
neutron star with both mass and radius observationally
determined up to the present.
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